Characterization of Polymers and Copolymers by means of Tandem Mass Spectrometry: Development of Software to Aid Identification

Tony Jackson
ICI Measurement Science Group
Redcar, UK

Outline

- Introduction
- Tandem mass spectrometry of poly(2-hydroxyethyl methacrylate)
- Development of Software
- Future developments

Outline

- Introduction
- Tandem mass spectrometry of poly(2-hydroxyethyl methacrylate)
- Development of Software
- Future developments

Introduction

- Development of new software for tandem mass spectrometry (MS/MS) of polymers
 - Primarily to aid interpretation of data
 - Uses published fragmentation pathways for polymers
- Software has been employed for interpretation of peptide fragmentation by MS/MS for many years
 - Well developed
 - Predictive
 - Used to characterize proteins along with MS data

Outline

- Introduction
- Tandem mass spectrometry of poly(2-hydroxyethyl methacrylate)
- Development of Software
- Future developments

MS/MS of Polymers

- Why?
 - Chemical composition of polymer
 - Backbone

$$\alpha A - [X]_n - B$$

End groups (i.e. initiating and terminating agents)

$$\alpha A - [X]_n - B$$

Comonomers

$$\alpha A - [X]_n - [Y]_m - B$$

- To generate information on end group structure
- MALDI-TOF mass spectrometry enables information on combined masses of end groups to be obtained
 - Subtraction of mass of cation and number of repeat units gives residual combined end group mass

Poly(2-Hydroxyethyl Methacrylate)

- Acrylic polymer
- Interesting properties as has reactive hydroxyl functionality for further reaction
 - E.g. cross-linking
- X and Y are initiating and terminating groups respectively

$$CH_3$$
 $X - \left\{CH_2C\right\}_n Y$
 $O = C$
 OCH_2CH_2OH

Poly(2-Hydroxyethyl Methacrylate)

- Focus on one polymer
 - Synthesized to have the following end group structure:

$$CH_{2}CH_{2}OH$$

$$CH_{3} C=O$$

$$H-CH_{2}C-CH_{2}C$$

$$O=C CH_{2}$$

$$OCH_{2}CH_{2}OH$$

- Used tandem mass spectrometry to confirm structure
 - Also used MALDI-TOF and NMR spectroscopy

Tandem Mass Spectrometry

- Electrospray ionisation (ESI) to generate precursor ions
- Tandem mass spectrometry in Q-ToF Global Ultima instrument
- Sample dissolved in methanol
- Sodium acetate in methanol added to promote formation of [M + Na]⁺ ions

ESI-MS/MS Instrumentation

ESI-MS/MS of Poly(HEMA)

End Groups of Poly(HEMA)

- End groups masses from A and B series of peaks
- Assignments agree with previously proposed fragmentation of other methacrylate polymers
 - Jackson et al., JASMS, 8, 1206-1213 (1997)
 - Jackson et al., IJMS, 238, 265-277 (2004)
- A series from retention of cation at terminating end of oligomer
- B series from retention of cation at initiating end of oligomer

End Groups of Poly(HEMA)

- End groups masses from A and B series of peaks
- Equations to calculate end group masses:

$$- m/z(\mathbf{A}_{Hn}) = M(\omega) + M(nH) - M(CH_2) + M(Cat)$$
 A Series

$$- m/z(\mathbf{B}_{Hn}) = M(\alpha) + M(nH) + M(Cat)$$
 B Series

– $m/z(\mathbf{A}_{Hn})$ & $m/z(\mathbf{B}_{Hn})$ are mass-to-charge ratios of peaks from \mathbf{A} and \mathbf{B} series respectively, $M(\omega)$ & $M(\alpha)$ are masses of terminating and initiating end groups respectively, M(nH) is the mass of monomer repeat unit and M(Cat) is mass of the cation

ESI-MS/MS of Poly(HEMA)

Expansion of MS/MS Spectrum (m/z 400 - 1600)

$$Na \begin{bmatrix} CH_{3} & CH_{2} \\ H-CH_{2}C-C-C \\ O=C & O=C \\ HOCH_{2}CH_{2}O & OCH_{2}CH_{2}OH \end{bmatrix} +$$

ESI-MS/MS of Poly(HEMA)

Expansion of MS/MS Spectrum (m/z 400 - 1600)

Low Intensity Series in Spectrum

- Peaks labelled C, D, E, F & G series analogous to those previously proposed for other alkyl methacrylate polymers
 - Jackson et al., JASMS, 8, 1206-1213 (1997)
 - Jackson et al., IJMS, 238, 265-277 (2004)
- Other series resulting from losses of side-chains of poly(HEMA)
 - Proposed that six-membered ring formed from side-chain losses

Outline

- Introduction
- Tandem mass spectrometry of poly(2-hydroxyethyl methacrylate)
- Development of Software
- Future developments

Development of Software

- Software developed to aid interpretation of MS/MS spectra of polymers
- Uses fragmentation assignments previously proposed and in the literature
 - Polyglycols by Lattimer et al.
 - Methacrylates by Jackson et al.
 - Styrenes by Jackson et al.

- The software was written in Java 1.4.2 (Sun Microsystems), in an object oriented fashion
- The inputs that need to be presented to the program are:
 - Polymer class
 - Initiating and terminating end groups
 - Number of repeat units of the polymer
 - Cation used in the experiment

- The MS/MS data (as centroided peaks) are loaded from an ASCII text file
 - containing mass-to-charge ratio (m/z) data
 - intensity information
- The program was tested on a Pentium IV 2.4 GHz PC running Windows XP
- The program takes less than a millisecond to generate the fragment ion information
- Peak annotation lies in the same time space.
- The data from the program can be printed or exported for use in another program, such as Excel.

- Example shown for poly(2-hydroxyethyl methacrylate)
- Text file of spectrum shown previously created
- Data entered into software
- Information on polymer chemistry and cationization agent added
- Spectrum annotated by software
- Can be used with nominal and accurate mass data

Polymer & Cation Information

Open
Spectrum
as ASCII
Text File

Enter
Polymer
& Cation
Information

Theoretical Fragment Ion Data Calculation

Spectral Annotation

Fragment Ion Data Including ppm Error

Annotated
Spectrum
-Fragment
Ion Series
& Molecule
Ion Labelled

Other Poly(HEMA) Examples

- Data from other poly(2-hydroxyethyl methacrylate) samples
- Polymer initiated by AIBN

Polymer initiated by AMBN

Poly(HEMA) Initiated by AIBN

Poly(HEMA) Initiated by AIBN

Poly(HEMA) Initiated by AIBN

Series	Theoretical Mass	Observed Mass	Intensity	mDa	ppm
[G0]	153.0528	153.0535	33.8535	-0.7062	-4.6141
[CO]	220.095	220.0938	0.2379	1.1928	5.4195
[B1]	221.1028	221.1022	14.4339	0.6178	2.7942
[A0]	268.0923	268.0926	12.4453	-0.2874	-1.072
[F1]	276.1576	276.1581	0.2474	-0.5072	-1.8366
[G1]	283.1158	283.1174	1.589	-1.6124	-5.6952
[D1]	323.1471	323.1421	0.3806	4.9876	15.4345
[C1]	350.158	350.1598	1.3796	-1.8134	-5.1788
[B2]	351.1658	351.1649	0.4091	0.9116	2.5959
[A1]	398.1553	398.1541	0.2093	1.2064	3.03
[F2]	406.2206	406.2176	0.1332	2.9866	7.3522
[G2]	413.1788	413.1798	1.8459	-1.0186	-2.4653
[D2]	453.2101	453.2043	0.1427	5.7814	12.7566
[C2]	480.221	480.2222	0.5614	-1.2196	-2.5397
[E1]	527.2105	527.2203	0.3045	-9.8248	-18.6354
[C3]	610.284	610.2836	5.6613	0.3742	0.6132
[C3]	610.284	610.3142	1.2655	-30.2258	-49.5274
[B4]	611.2918	611.2885	1.2845	3.2992	5.3971
[E2]	657.2735	657.2922	0.0571	-18.731	-28.498
[M+Na]+	740.347	740.3497	100	-2.732	-3.6902

$$\begin{array}{ccccc} CH_{3} & CH_{3} & CH_{2} \\ H_{3}C-C-C-C+CH_{2}C-C+CH_{2}C & CH_{2}C \\ CN & C=O & C=O \\ HOCH_{2}CH_{2}O & OCH_{2}CHOH \end{array}$$

Poly(HEMA) Initiated by AMBN

Poly(HEMA) Initiated by AMBN

Poly(HEMA) Initiated by AMBN

Series	Theoretical mass	Observed mass	Intensity	mDa	ppm
[G0]	153.0528	153.0539	100	-1.1062	-7.2276
[C0]	234.1106	234.1108	1.3638	-0.1572	-0.6715
[B1]	235.1185	235.1177	6.6716	0.7678	3.2656
[A0]	268.0923	268.0927	22.1157	-0.3874	-1.445
[G1]	283.1158	283.1174	5.1603	-1.6124	-5.6952
[F1]	290.1732	290.1727	0.9952	0.5428	1.8706
[D1]	323.1471	323.1496	2.0826	-2.5124	-7.7748
[C1]	364.1736	364.1742	2.7645	-0.5634	-1.5471
[B2]	365.1815	365.1776	0.3133	3.8616	10.5745
[A1]	398.1553	398.1388	0.1106	16.5064	41.4572
[G2]	413.1788	413.1814	4.7733	-2.6186	-6.3377
[F2]	420.2362	420.2438	0.8109	-7.5634	-17.998
[D2]	453.2101	453.203	0.8293	7.0814	15.625
[D2]	453.2101	453.2283	0.3686	-18.2186	-40.199
[C2]	494.2366	494.2372	1.2717	-0.5696	-1.1525
[E1]	527.2105	527.2128	0.5345	-2.3248	-4.4096
[G3]	543.2418	543.2443	0.2949	-2.5248	-4.6477
[D3]	583.2731	583.2831	0.2027	-10.0248	-17.1871
[C3]	624.2996	624.2976	3.7597	2.0242	3.2424
[C3]	624.2996	624.3301	1.1426	-30.4758	-48.816
[B4]	625.3074	625.304	1.5112	3.4492	5.516
[M+Na]+	754.3626	754.3642	19.0564	-1.582	-2.0971

$$\begin{array}{c|ccccc} CH_{3} & CH_{3} & CH_{2} \\ H_{3}CCH_{2} - C - CH_{2}C - CH_{2}C$$

Examples for Other Polymers

- Examples for other polymer systems
 - MS/MS data from other polymer systems with the software
- Show how interpretation time may be reduced
- Polyglycols and PMMA

ESI-MS/MS of PEG

- ESI-MS/MS of poly(ethylene glycol) (PEG)
 - Dihydroxyl end-capped standard
- Lithium added as cationization agent
 - [M + Li]⁺ ions selected for MS/MS
- Accurate mass data to confirm assignments
 - Agree with assignments originally made Lattimer and coworkers

$$HO - \left[CH_2CH_2O\right]_n H$$

MS/MS of PEG

 $HO - \left[CH_2CH_2O\right]_{22}H$

ESI-MS/MS of PPG

- ESI-MS/MS of poly(propylene glycol) (PPG)
 - Dihydroxyl end-capped standard
- Lithium added as cationization agent
 - [M + Li]⁺ ions selected for MS/MS
- Accurate mass data to confirm assignments
 - Agree with assignments originally made Lattimer and coworkers

$$HO = CH_2CHO = H$$
 CH_3

MS/MS of PPG

ESI-MS/MS of PMMA

- ESI-MS/MS of poly(methyl methacrylate) (PMMA)
 - Standard generated by group transfer polymerisation
- Lithium added as cationization agent
 - [M + Li]⁺ ions selected for MS/MS
- Accurate mass data to confirm assignments
 - Agree with assignments originally made Jackson et al.

$$CH_3$$
 $H-CH_2C-H$
 $O=C$
 OCH_3

MS/MS of PMMA

Outline

- Introduction
- Tandem mass spectrometry of poly(2-hydroxyethyl methacrylate)
- Development of Software
- Future developments

Future Developments

- Additional fragmentation pathways to be added
 - Different polymer types
 - E.g. isoprenes, butadienes
 - New fragmentation mechanisms
 - E.g. polyglycols such as poly(propylene glycol)
- Capability for multiply charged precursor ions
- Development of software for copolymers
- Predictive software is 'Holy Grail'

Summary

- Fragmentation of poly(2-hydroxyethyl methacrylate) similar to that described for other methacrylates
 - Some additional losses from side chains of polymer
- Use of software to aid interpretation of MS/MS spectra from polymers
 - Currently for glycols, styrenes and methacrylates

Acknowledgements

University of Warwick

- Konstantinos Thalassinos
- Richard John
- James Scrivens
- Susan Slade
- Jonathan Williams

ICI Uniqema

- Niaz McGuire
- David Freeman
- Derek Irvine